

ETHERS

Ethers are a class of organic compounds that contain an oxygen between two alkyl or aryl groups. They have the formula R-O-R', where R and R' are alkyl groups. These compounds are used in dye, perfumes, oils, waxes and industrial use. Ethers are named as alkoxyalkanes.

NOMENCLATURE OF ETHERS

Ethers are compounds having two alkyl or aryl groups bonded to an oxygen atom, as in the formula $R_1 - O - R_2$. The ether functional group does not have a characteristic IUPAC nomenclature suffix, so it is necessary to designate it as a substituent. To do so the common alkoxy substituents are given names derived from their alkyl component (below):

ALKYL GROUP	NAME	ALKOXY GROUP	NAME
CH₃⁻	Methyl	CH ₃ O-	Methoxy
CH ₃ CH ₂ -	Ethyl	CH₃CH₂O⁻	Ethoxy
(CH₃)₂CH-	Isopropyl	(CH₃)₂CHO-	Isopropoxy
(CH₃)₃C−	Tert- Butyl	(CH ₃) ₃ CO-	Tert- Butoxy
C ₆ H ₅ -	Phenyl	C ₆ H ₅ O -	Phenoxy

Ethers can be named by naming each of the two carbon groups as a separate word followed by a space and the word ether. The -OR group can also be named as a substituent using the group name, alkoxy.

- Procees via carbocation intermediate, rearrangement may take place.
- 2 Do not procees via carbocation intermediate, rearrangement is avoided.
- 3 Gives methyl ether (RCH2CH2OCH3)

